The enumeration of labelled spanning trees of Km, n
نویسندگان
چکیده
Using a bijection to decompose a labelled rooted bipartite tree into several ones with smaller size and their exponential generating functions, this paper concerns the number of labelled spanning trees of the complete bipartite graph K m,n .
منابع مشابه
Counting the number of spanning trees of graphs
A spanning tree of graph G is a spanning subgraph of G that is a tree. In this paper, we focus our attention on (n,m) graphs, where m = n, n + 1, n + 2, n+3 and n + 4. We also determine some coefficients of the Laplacian characteristic polynomial of fullerene graphs.
متن کاملOn relation between the Kirchhoff index and number of spanning trees of graph
Let $G=(V,E)$, $V={1,2,ldots,n}$, $E={e_1,e_2,ldots,e_m}$,be a simple connected graph, with sequence of vertex degrees$Delta =d_1geq d_2geqcdotsgeq d_n=delta >0$ and Laplacian eigenvalues$mu_1geq mu_2geqcdotsgeqmu_{n-1}>mu_n=0$. Denote by $Kf(G)=nsum_{i=1}^{n-1}frac{1}{mu_i}$ and $t=t(G)=frac 1n prod_{i=1}^{n-1} mu_i$ the Kirchhoff index and number of spanning tree...
متن کاملListing all spanning trees in Halin graphs - sequential and Parallel view
For a connected labelled graph G, a spanning tree T is a connected and an acyclic subgraph that spans all vertices of G. In this paper, we consider a classical combinatorial problem which is to list all spanning trees of G. A Halin graph is a graph obtained from a tree with no degree two vertices and by joining all leaves with a cycle. We present a sequential and parallel algorithm to enumerate...
متن کاملSpanning Tree Enumeration in 2-trees: Sequential and Parallel Perspective
For a connected graph, a vertex separator is a set of vertices whose removal creates at least two components. A vertex separator S is minimal if it contains no other separator as a strict subset and a minimum vertex separator is a minimal vertex separator of least cardinality. A clique is a set of mutually adjacent vertices. A 2-tree is a connected graph in which every maximal clique is of size...
متن کاملEnumeration results for alternating tree families
We study two enumeration problems for up-down alternating trees, i.e., rooted labelled trees T , where the labels v1, v2, v3, . . . on every path starting at the root of T satisfy v1 < v2 > v3 < v4 > · · · . First we consider various tree families of interest in combinatorics (such as unordered, ordered, d-ary and Motzkin trees) and study the number Tn of different up-down alternating labelled ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Australasian J. Combinatorics
دوره 28 شماره
صفحات -
تاریخ انتشار 2003